
Can We Move Fast
Without Breaking Things?
Software Engineering Methods
Matter to Human Rights Outcomes

Alexander Voss

Carr Center
Discussion Paper

FALL 2022

CARR CENTER FOR HUMAN RIGHTS POLICY
HARVARD KENNEDY SCHOOL

CARR CENTER FOR HUMAN RIGHTS POLICYb

Can We Move Fast Without Breaking Things?
Software Engineering Methods Matter to Human Rights Outcomes

Carr Center for Human Rights Policy

Harvard Kennedy School, Harvard University

October 24, 2022

Alexander Voss

Technology and Human Rights Fellow

Carr Center for Human Rights Policy

The views expressed in the Carr Center Discussion Paper

Series are those of the author(s) and do not necessarily

reflect those of the John F. Kennedy School of Government

or of Harvard University. Faculty Research Working Papers

have not undergone formal review and approval. Such papers

are included in this series to elicit feedback and to encourage

debate on important public policy challenges. Copyright

belongs to the author(s). These papers may be downloaded

for personal use only.

CARR CENTER FOR HUMAN RIGHTS POLICYc

ACKNOWLEDGEMENTS

I would like to thank the Carr Center for accepting me into their Technology Fellows Program
and its fellows for the numerous discussions that have been invaluable in shaping my views
on the relationship between human rights and technologies as well as the context and meth-
ods of their production. Special thanks to Sushma Raman and Mathias Risse for their support
and encouragement as well as Laryssa Da Silveira, Rachel Harris and Philip Hamilton for their
help managing the proofing and publication process. Many thanks also to Brandie Nonnecke
and Vivek Krishnamurthy for their constructive comments on the paper. I am indebted to
Matt Ritter for his insightful comments around the question of how rights could ever “rise
above the line” in the backlog. I also want to thank Bob Wyman for his comments on the right
to freedom of opinion and expression as well as on the level of influence that other iterative
process models had on software engineering before the advent of agile approaches.

ABSTRACT

As the products of the IT industry have become ever more prevalent in our everyday lives,
evidence of undesirable consequences of their use has become ever more difficult to ignore.
Consequently, several responses ranging from attempts to foster individual ethics and col-
lective standards in the industry to legal and regulatory frameworks have been developed
and are being widely discussed in the literature. This paper instead makes the argument that
currently popular methods of software engineering are implicated as they hinder work that
would be necessary to avoid negative outcomes. I argue that software engineering has re-
gressed and that introducing rights as a core concept into the ways of working in the industry
is essential for making software engineering more rights-respecting.

CARR CENTER FOR HUMAN RIGHTS POLICY1

Introduction

As the products of computer science and the IT industry have
become ubiquitous in our lives, we have drawn great bene-
fits from the availability of planet-wide networking, of cheap,
mass-marketed devices, and, recently, of machine learning
systems powered by large-scale distributed systems. By now,
however, it has also become abundantly clear that the im-
mense benefits we have reaped are accompanied by myriad
negative consequences. The recent surge in machine learning
applications in particular has produced a constant stream of
examples of negative outcomes documented in the academic
and trade literature as well as news headlines.

Most authors writing about these negative consequenc-
es agree that these are not attributable to “bugs” that are
unfortunate but ultimately fixable. As I will discuss below,
they reflect systemic problems. Authors disagree to some
extent on the causes but many point to business models,
the “bro culture” in the industry, a lack of diversity more gen-
erally, and the influence of wider inequities in society. What
they largely agree on is that it is not “just a few bad apples”
(though some particular apples get mentioned quite often)
but that, instead, there are mechanisms at play that do not
depend on individual actors misbehaving to cause the prob-
lems we are experiencing.

In this paper, I argue that the methods by which we develop
systems matter to outcomes. They do not just determine if a
project or product is successful, whether it serves the stat-
ed purpose, and whether it improves the “bottom line.” Our
choice of methods also affects human rights outcomes for
stakeholders. I will argue below that software engineering

1 Virginia Eubanks, Automating Inequality: How High-Tech Tools Profile, Police and Punish the Poor (New York, NY: St. Martin’s Press, 2018).

2 Woodrow Hartzog, Privacy’s Blueprint: The Battle to Control the Design of New Technologies (Cambridge, Massachusetts: Harvard University
Press, 2018).

3 Eric Meyer and Sara Wachter-Boettcher, Design for Real Life, 1st edition (A Book Apart, 2016); Sara Wachter-Boettcher, Technically Wrong:
Sexist Apps, Biased Algorithms, and Other Threats of Toxic Tech (New York, NY: W.W. Norton & Company, Inc, 2018).

4 Arunesh Mathur et al., “Dark Patterns at Scale: Findings from a Crawl of 11K Shopping Websites,” Proc. ACM Hum.-Comput. Interact. 3, no.
CSCW (November 2019), https://doi.org/10.1145/3359183; Hartzog, Privacy’s Blueprint: The Battle to Control the Design of New Technologies.
See also https://webtransparency.cs.princeton.edu/dark-patterns/.

5 Colin M. Gray and Shruthi Sai Chivukula, “‘That’s Dastardly Ingenious’: Ethical Argumentation Strategies on Reddit,” Proceedings of the
ACM on Human-Computer Interaction 5, no. CSCW1 (April 2021), https://doi.org/10.1145/3449144. p.69.

6 Colin M. Gray et al., “Dark Patterns and the Legal Requirements of Consent Banners: An Interaction Criticism Perspective,” in Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21 (New York, NY, USA: Association for Computing Machinery,
2021), https://doi.org/10.1145/3411764.3445779.

7 Arvind Narayanan et al., “Dark Patterns: Past, Present, and Future: The Evolution of Tricky User Interfaces,” Queue 18, no. 2 (April 2020):
67–92, https://doi.org/10.1145/3400899.3400901.

has regressed as methods have become overly focused on
the continuous delivery of new functionality at the expense
of overarching and cross-cutting concerns. From this critique,
I develop the notion of rights-respecting software engineer-
ing and outline what it would take to develop methods that
make an explicit representation and consideration of rights
possible in the development of software products and services.

Negative Outcomes

While machine learning systems are attracting a lot of at-
tention at the moment, much more mundane systems can
also give rise to a range of negative outcomes. Illustrative
examples can be found in Eubanks’ book on automating in-
equality,1 which details the impact of workflow management
technologies in welfare administration, Hartzog’s book on
design and privacy,2 or in the work of Meyer and Wach-
ter-Boettcher,3 who point out that the humble online form
can lead to negative outcomes for those whose data do not
match the expectations of the form’s designers.

One whole class of designs that are simple in nature but
create negative outcomes for users on a massive scale due
to their wide adoption4 are “dark patterns,” which are “de-
ceptive, manipulative, and coercive practices to encourage
certain patterns of use and discourage others.”5 Dark pat-
terns serve corporate interests at the expense of the inter-
ests of users. Examples are user consent banners that make
it much easier to consent to tracking than not to6 and online
shops displaying countdown timers suggesting that an offer
is about to come to an end.7

https://webtransparency.cs.princeton.edu/dark-patterns/

CARR CENTER FOR HUMAN RIGHTS POLICY2

There also seems to be agreement that while problems with
negative outcomes of the use of IT are not new8 (witness
Kling,9 Weizenbaum,10 and many others), the degree to which
IT permeates our lives as well as the increased use of auto-
mated decision-making mean that the impact is growing.11
Moreover, the impact is unevenly distributed, with those
suffering from historical injustices and persistent inequities
being the most affected.

Noble speaks of technological redlining12 when she describes
the role of algorithms in racial profiling, drawing a compari-
son with the redlining practices that further segregated the
US13 by systematically discriminating against people based
on their place of residence. Scholars like Alexander14 and
Roithmayr15 point out how racial discrimination and inequal-
ities are re-produced despite the advances of the era of re-
construction and the civil rights movement. While explicitly
race-based policies were replaced by discriminatory prac-
tices that are not overtly racist, these practices also have a
devastating effect on the populations they target. Jim Crow
laws were replaced by a range of practices that Alexander
calls “The New Jim Crow.”16 Following this theme, Benjamin
describes the role that technology plays in reinforcing racial
inequities the “New Jim Code.”17

For better and for worse, technologies are often used as ways to
implement policy agendas. In her book Automating Inequality,
Eubanks describes how technologies are used in the administra-
tion of welfare and in other areas to police and punish the poor.18

8 Mar Hicks, “When Did the Fire Start?,” in Your Computer Is on Fire, ed. Thomas S. Mullaney et al. (Cambridge, MA: The MIT Press, 2021).

9 Rob Kling, ed., Computerization and Controversy: Value Conflicts and Social Choices, 2nd ed. (San Diego: Academic Press, 1996).

10 Joseph Weizenbaum, Computer Power and Human Reason: From Judgment to Calculation (San Francisco: W. H. Freeman, 1976).

11 One might argue that the growth is exponential given the exponential growth of many sectors of IT use and the fact that multiple factors
are at play. However, any significant growth should be sufficient to cause us to consider the arguments laid out in this paper.

12 Safiya Umoja Noble, Algorithms of Oppression: How Search Engines Reinforce Racism (New York: New York University Press, 2018).

13 Richard Rothstein, The Color of Law: A Forgotten History of How Our Government Segregated America, First edition., Democracy and Urban
Landscapes (New York; London: Liveright Publishing Corporation, a division of W.W. Norton & Company, 2017).

14 Michelle Alexander, The New Jim Crow: Mass Incarceration in the Age of Colorblindness, Rev. ed. (New York, NY: [Jackson, TN]: New Press;
Distributed by Perseus Distribution, 2012).

15 Daria Roithmayr, Reproducing Racism: How Everyday Choices Lock In White Advantage (New York: NYU Press, 2014).

16 Alexander, The New Jim Crow: Mass Incarceration in the Age of Colorblindness.

17 Ruha Benjamin, Race after Technology: Abolitionist Tools for the New Jim Code (Newark: Polity Press, 2019).

18 Eubanks, Automating Inequality: How High-Tech Tools Profile, Police and Punish the Poor. p.12.

19 Rob Kling, “Automated Welfare Client-Tracking and Service Integration: The Political Economy of Computing,” Communications of the
ACM 21, no. 6 (1978): 484–93. p. 485

20 Kling. p. 485.

Uses of computer technologies to administer welfare are not
new, of course. Kling wrote in 1978 about how “automated in-
formation systems may serve several uses simultaneously.”19
Systems that are advertised to increase efficiencies through
better inter-agency coordination, better use of resources, im-
proved delivery of services soon also get used to “catch ‘wel-
fare cheaters’ or [to help] police obtain current addresses of
wanted persons.”20 Kling points out that the introduction of
one system he studied had more to do with“administrative at-
tractiveness” and the ability of administrators to access feder-

“Job losses, migration,
ill health, bereavements,
or simply the onset of old
age are things most of
us experience that can
fundamentally change
how we experience the
outcomes of our interactions
with IT systems.”

CARR CENTER FOR HUMAN RIGHTS POLICY3

al funds than it had to do with enabling the work in the welfare
agencies themselves that might have helped to improve deliv-
ery of services to those in need.21

It seems fair to conclude that the unprecedented application
of information technologies in ever more domains of life has
unintended negative consequences brought about by incom-
petence, ineptitude, carelessness, or simple oversight, but
also by reproduction of systemic inequities and injustices.
For those most vulnerable to rights violations, these negative
consequences add to the burden they carry and can substan-
tially impact their lives. It is thanks to authors like Noble, Ben-
jamin, and Eubanks (to name a few) that these consequences
reach our collective consciousness.

With the increasing impact of automated decision-making
and the increasing role of new media in society, matters are
arguably coming to a head. The now regular pictures of the
captains of the IT industry having to answer before Congress
show that the sense of urgency has spread beyond a small
circle of activists and academics. In the words of Mullaney,
“the time for equivocation is over.”22

Negative Outcomes, Experiences, and Rights

Negative outcomes range from the mundane, even trivial and
merely annoying, to those with serious consequences for life,
bodily and mental health, economic welfare, privacy, liberty, or
a person’s ability to fully participate in society and democrat-
ic processes. Some of these problems might be described as
merely poor “user experience”23 but others constitute clear
human rights violations. A pedestrian run over by an automat-
ed car is not just having a bad day in our technicized society.
Someone being denied health insurance because they could
not file a document on time and did not have a caseworker to
talk to because the welfare administration system was central-
ized24 is also not just suffering from poor “user experience.”

21 Kling. p. 488.

22 Thomas S. Mullaney, Your Computer Is on Fire, ed. Thomas S. Mullaney et al., Your Computer Is on Fire (Cambridge, MA: The MIT Press,
2021). p. 7.

23 e.g., Rex Hartson and Pardha S Pyla, The UX Book: Process and Guidelines for Ensuring a Quality User Experience, UX Book, The (San Diego:
Elsevier Science & Technology, 2012).

24 Eubanks, Automating Inequality: How High-Tech Tools Profile, Police and Punish the Poor.

25 Sasha Costanza-Chock, Design Justice: Community-Led Practices to Build the Worlds We Need, Information Policy (Cambridge, MA: The MIT
Press, 2020).

The boundary between both categories is blurry and diffi-
cult to define as well as difficult to adjudicate even in con-
crete cases. Does, for example, the experience of transgen-
der people of being more routinely selected for secondary
screening in airport security areas constitute a mere poor
experience? As Sasha Costanza-Chock points out, the an-
swer may partly depend on whether there are other aspects
of their lives that make them vulnerable or whether, con-
versely, they carry a privilege based on their citizenship and
social status.25

It is not unusual that the importance of a right becomes
clearly visible only when we consider situations in which we
might be vulnerable or when we begin to understand the
circumstances that make others vulnerable. Job losses, mi-
gration, ill health, bereavements, or simply the onset of old
age are things most of us experience that can fundamentally
change how we experience the outcomes of our interactions
with IT systems.

The debate about transgender rights shows how changes in
society may well lead to changes in what we see as a right of
a citizen or as a human right. Transgender rights are not gen-
erally incorporated into human rights frameworks yet, but
we can imagine a future in which this has changed.

CARR CENTER FOR HUMAN RIGHTS POLICY4

A pedestrian run over by
an automated car is not
just having a bad day in
our technicized society.

Someone being denied health
insurance because they
could not file a document
on time and did not have a
caseworker to talk to because
the welfare administration
system was centralized is
also not just suffering from
poor “user experience.”

“

CARR CENTER FOR HUMAN RIGHTS POLICY5

What is more, as Schulz and Raman26
point out, not all rights are created equal.
Even rights formally established in the
UN Universal Declaration of Human
Rights,27 the UN’s International Cove-
nant on Economic, Social, and Cultural
Rights,28 or by national laws do not all
have the same status. For example, they
carry different weights when human
rights courts have to adjudicate cases in
which one person’s right to A conflicts
with another’s right to B. They also have different levels of
public support. At any point in time there is likely to be a gap
between formally defined rights and the lived experience of
rights in society. At times, formal rights may be established
but poorly enforced. At other times, societies may be ahead
in how they respect and promote rights, even before they
are codified in laws and international treaties.

What also changes is who we take to be duty bearers. The
traditional view is that it is states and their governments
that have duties with regard to (human) rights. Increasingly,
however, the role that other (trans-)national institutions and
corporations play in affecting rights is recognized and, con-
sequently, the view has widened to assign duties to actors
beyond the nation state. These duties may be very different
from those of states.29 Human rights frameworks are trans-
lated into legislation at the national and supra-national level
that corporations are subject to. In addition, the UN Guiding
Principles on Business and Human Rights30 provide a soft-
law framework for regulating the duties of both states and
businesses with regard to the impact that business activities
can have on human rights.

In light of the breadth of rights impacts that non-state ac-
tors have, it seems fair to say they must not limit themselves

26 William F. Schulz and Sushma Raman, The Coming Good Society: Why New Realities Demand New Rights (Cambridge, MA: Harvard Uni-
versity Press, 2020).

27 Universal Declaration of Human Rights (New York: United Nations, 1997).

28 “International Covenant on Economic, Social and Cultural Rights” (United Nations, 1966), https://www.ohchr.org/en/professionalinter-
est/pages/cescr.aspx.

29 Samantha Besson, “The Bearers of Human Rights’ Duties and Responsibilities for Human Rights: A Quiet (r)Evolution?,” Social Philoso-
phy & Policy 32, no. 1 (2015): 244–68.

30 “Guiding Principles on Business and Human Rights” (United Nations, April 2011), http://www.ohchr.org/Documents/Publications/Gui-
dingPrinciplesBusinessHR_EN.pdf.

31 Leif Wenar, Blood Oil: Tyrants, Violence, and the Rules That Run the World (Oxford; New York: Oxford University Press, 2016).

32 Adam Satariano, “Russia Intensifies Censorship Campaign, Pressuring Tech Giants,” The New York Times, February 26, 2022, https://www.
nytimes.com/2022/02/26/technology/russia-censorship-tech.html.

33 Irene Khan, “Disinformation and Freedom of Opinion and Expression” (United Nations Human Rights Council, April 2021),
https://www.ohchr.org/en/documents/thematic-reports/ahrc4725-disinformation-and-freedom-opinion-and-expression-report.

to mere compliance with existing leg-
islation, which is all too often playing
catch-up with the new realities of our
technicized world. The war unleashed
by Vladimir Putin against the state
of Ukraine and its people has, again,
highlighted the complex intermingling
of powers reserved by states and those
held de-facto by private corporations
and other non-state actors. The con-
flict has shown how vulnerable West-

ern economies have become by their dependence on fossil
fuel31 as well as their investments in countries with worrying
human rights records.32

The IT industry has yet to come up with convincing answers to
the problem of amplification of mis- and dis-information through
its platforms, especially answers that do not at the same time run
the risk of negatively impacting other rights such as freedom of
opinion and expression. Achieving a balance between the right
to freedom of opinion and expression and other human rights
is a significant challenge both for the industry and legislators
as the 2021 report on “Disinformation and Freedom of Opin-
ion and Expression” by the UN Special Rapporteur illustrates.33

Responses to IT’s Negative Consequences

Clearly, something has to change and so it is worthwhile to
consider the range of possible responses to the negative out-
comes produced by the IT industry. We can categorize them
according to where they locate the root of the problem, what
they suggest should be done about it, and who should ad-
dress it. One possible categorization is shown in Table 1.

London protests against war in Ukraine, 2022

https://www.ohchr.org/en/professionalinterest/pages/cescr.aspx
https://www.ohchr.org/en/professionalinterest/pages/cescr.aspx
https://www.nytimes.com/2022/02/26/technology/russia-censorship-tech.html
https://www.nytimes.com/2022/02/26/technology/russia-censorship-tech.html
https://www.ohchr.org/en/documents/thematic-reports/ahrc4725-disinformation-and-freedom-opinion-and-expression-report

CARR CENTER FOR HUMAN RIGHTS POLICY6

 CATEGORY ACTOR WHAT CHANGES

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

Table 1
Types of Responses to Negative Impacts of (Information) Technologies

Human rights treaties

Legislation

Industry regulation

External activism

Self-regulation

Diversity

 Professional licensing
and standards

Ethics

Internal Activism

Cultural Change

Methods Change

Supra-national organizations

State

State

Civil Society

Companies

Companies

 Professional associations

Professional associations,
Individual workers

Individual workers

Education system; industry;
professional associations

Companies and their workers

International human rights frameworks

Rules under which industry operates

Rules under which industry operates

Market conditions; external pressure

Rules under which industry governs itself

Composition of the workforce

 Entry to the profession controlled;
standards of practice established

Guidance for individuals; internal
resistance to state of the industry;
consideration of design decisions

Internal resistance to state of the industry

Attitudes and the intellectual
wherewithal to deal with questions
of the role of technology in society

Ways of working in the industry

CARR CENTER FOR HUMAN RIGHTS POLICY7

It is the last category that I wish to argue has been neglected so
far. Changes in the methods used in software engineering are es-
sential if we wish responses 1-10 to be effective in the long term
and across the board.34 After all, it does not matter how much
pressure is applied to the IT industry internally or externally, in
the end changes are needed not just in policies and business
practices but also in the way that technologies are designed and
configured. However, as I will argue below, there is currently a
disconnect between the predominant methods used to develop
software and over-arching questions of the impact these sys-
tems and services have on people and on wider society.

There is currently much debate about the importance of eth-
ics in the tech sector and of a culture change in the indus-
try. While ethics education and the establishment of ethical
guidelines are no doubt important, they can only be a partial
answer to the issues we face as they leave a gap between ethi-
cal considerations and their translation into practice. As Green
observes,35 there is “a lack of mechanisms to enact or enforce
the espoused [ethical] principles.” Likewise, a reconsideration
of the culture of computing and changes to make the industry
less toxic and more inclusive will not in themselves change
much if we do not have the wherewithal to translate insights
about the social impact and considerations of a broader set of
values into actual technical change. Connolly36 calls for soul
searching in computing departments:

“[…] because computing as a discipline is becoming pro-
gressively more entangled within the human and social
lifeworld, computing as an academic discipline must
move away from engineering-inspired curricular models
and integrate the analytic lenses supplied by social sci-
ence theories and methodologies.”

There is much to be gained by following this call and integrating
social science methods in computing education and practice.
However, there is an open question as to just what role social
research methods could play in computing and what methods
we should choose for what purposes. Methods, after all, do
have politics and have a social life37 in that they emerge from
the social world and at the same time shape how we under-

34 With the possible exception of (1) when the use of some technologies is banned and the need for better methods becomes superfluous.
Facial recognition in the public domain may be such a case.

35 Ben Green, “The Contestation of Tech Ethics: A Sociotechnical Approach to Technology Ethics in Practice,” Journal of Social Computing 2,
no. 3 (2021): 209–25, https://doi.org/10.23919/JSC.2021.0018.

36 Randy Connolly, “Why Computing Belongs within the Social Sciences,” Communications of the ACM 63, no. 8 (July 2020): 54–59, https://doi.
org/10.1145/3383444. p.55.

37 Mike Savage, “The ‘Social Life of Methods’: A Critical Introduction,” Theory, Culture & Society 30, no. 4 (2013): 3–21, https://doi.
org/10.1177/0263276413486160; E. Ruppert, J. Law, and M. Savage, “Reassembling Social Science Methods: The Challenge of Digital Devices,”
Theory, Culture & Society 30, no. 4 (July 1, 2013): 22–46, https://doi.org/10.1177/0263276413484941.

38 Such as Human-Computer Interaction (HCI) or Computer Supported Cooperative Work (CSCW).

39 Paul Dourish, “Implications for Design,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’06 (New
York, NY, USA: ACM, 2006), 541–50, https://doi.org/10.1145/1124772.1124855.

stand it. Our choices of how to engage with the vast array of
research traditions in the social sciences will have an impact on
the outcomes we achieve. What is more, the history of fields at
the intersection38 between computing and the social sciences
has shown that there is often no straightforward way to trans-
late insights from the application of social science methods to
concrete “implications for design” and that, in fact, looking for
such straightforward implications as inputs to the business of
computing may be misguided.39 Again, as in the case of tech
ethics, there is a gap between ways to study and reason about
the (potential) impact of technologies as well as our attempts
to control negative impacts on the one side and the business of
developing products, systems, and services on the other.

In the following, I show how recent developments in software
engineering have widened this gap by constraining method-
ological choices to a set of methods for increasing the cadence
of development and the delivery of ‘features’ at the cost of lon-
ger-term interests. This represents a regression compared to
what had already been achieved in software engineering and
in fields we might collect under the umbrella of “human-cen-
tric computing.” The specific question I will then pursue is
how we might narrow the gap again and develop what we
might call methods for rights-respecting software engineering.

“Traditional” Software Engineering

Until the early 2000s, software engineering approaches tend-
ed to follow a phased approach in which each phase of work
is a preparation for the next. The idea was to manage the risk
of wasting work further downstream or jeopardizing the proj-
ect outright by investing up-front effort into analysis and de-
sign activities, producing documentation that would guide
the implementation of the system. Another aspect that made
these approaches popular was that they provided a common
language for measuring progress—albeit at a very coarse level—
and provided a chance to exercise control over projects by as-
sessing their readiness to move to the next phase at predefined
milestones. The emphasis on planning lead to the description
of these models as “plan-based.”

https://doi.org/10.1177/0263276413486160
https://doi.org/10.1177/0263276413486160
https://doi.org/10.1177/0263276413484941

CARR CENTER FOR HUMAN RIGHTS POLICY8

One of the earliest versions of plan-based development ap-
pears in a paper by Royce,40 first presented in 1970, in which he
also points out that a purely linear approach is unlikely to work
since software that interacts with humans cannot be fully ana-
lyzed in advance, unlike software that merely performs a set of
calculations. We might add to this that if development takes
any serious amount of time, chances are that some require-
ments change in that timeframe. As a consequence, Royce ad-
vocated for the inclusion of feedback from work “downstream”
into earlier phases.

It is unfortunate that Royce’s paper became known as the
source of the “waterfall” model, an apt description of the linear
model that appears at the beginning of the paper only to be
critiqued. It is even more unfortunate that the “waterfall model”
became popular and a reference point for talk about software
process models. This led to many projects that failed because

40 W. W. Royce, “Managing the Development of Large Software Systems: Concepts and Techniques,” in Proceedings of the 9th International
Conference on Software Engineering, ICSE ’87 (Washington, DC, USA: IEEE Computer Society Press, 1987), 328–38.

41 B. Boehm, “A Spiral Model of Software Development and Enhancement,” SIGSOFT Software Engineering Notes 11, no. 4 (August 1986): 14–24,
https://doi.org/10.1145/12944.12948; Barry Boehm et al., The Incremental Commitment Spiral Model: Principles and Practices for Successful
Systems and Software, 1st ed. (Addison-Wesley Professional, 2014).

of the kinds of problems that Royce foresaw in 1970. As
I will discuss below, it also led to a rather summary dis-
missal of a phased approach to software development
subsequently that I will argue has equally negative
consequences—not for productivity, but for the qual-
ity and social acceptability of outcomes.

Before discussing this, however, it is worth noting
that software process models were, in fact, devel-
oped that included an explicitly iterative approach
that uses preliminary work of limited scope in or-
der to test assumptions and decisions made before
committing to a full-scale implementation. An ex-
ample of such a model is Barry Boehm’s “Incremen-
tal Commitment Spiral Model,”41 first introduced
in 1986 and subsequently refined. It is an excellent
example of a process model that employs a phased
approach but aims to avoid the problems the “water-
fall” gives rise to. In particular, it introduces an itera-
tive approach that avoids premature commitment to
full-scale implementation as well as allowing teams
to learn from preliminary work. A central idea is that
risk identification and mitigation should guide the
process. Crucially, and of particular interest in the
context of human rights, Boehm and his co-authors
emphasize the need to achieve and maintain align-
ment between the interests of many stakeholders
through a process of negotiation and satisficing.

The model by Boehm et al. is only one example of a
phased process model that incorporates iteration
and incremental work to overcome the problems of
a purely linear model. Its focus on managing project

risks and multi-stakeholder alignment makes it particularly
interesting for rights-respecting software engineering. While
models such as Boehm’s have influenced the development of
agile approaches, these have taken up the idea of iterative de-
velopment but have tended to focus it on short iteration and
feedback cycles in the development process. Agile enthusiasts
tend to shorten their treatment of the prior history of software
engineering to a comparison with the waterfall model, which
deletes from the discourse a lot of what was and is useful in
earlier process models. I will argue that the result of this is that
the kinds of longer-running concerns that Boehm’s model fore-
grounds are systematically neglected.

https://doi.org/10.1145/12944.12948

CARR CENTER FOR HUMAN RIGHTS POLICY9

The “Agile” Turn

A turning point in the history of software engineering was the
emergence of a new breed of methods in the late 1990s and
early 2000s and the release of the Manifesto for Agile Software
Development.42 The manifesto gave voice to frustrations with
traditional plan-based software development methods that
had been brewing for a while. Software development had long
been plagued by a sense of crisis as too many projects over-
ran in cost or time or both. Too many projects were getting
canceled or led to software that was not fit for purpose.

Practitioners realized that up-front planning is difficult to get
right and that it is better to work incrementally to reduce the
risk that problems are detected only once a system is launched
into full production. Projects risked being overtaken by chang-
ing requirements and circumstances if they were planned with
up-front analysis, followed by a long implementation period, and
testing and deployment at the end of the process. There was also
a sense that software engineering was hamstrung by placing too
much of an emphasis on the production of artifacts that were
not contributing directly to the development of a working system.
Examples include project plans, long-form requirements docu-
ments, as well as detailed architectural and design specifications.
The feeling was that suitably crafted code could replace many
of these and that an incremental, iterative development and
delivery approach could replace up-front planning, reducing
planning horizons to weeks instead of months or years.

42 Kent Beck, et al., “Manifesto for Agile Software Development,” https://agilemanifesto.org/.

43 Kent Beck, et al., “Manifesto for Agile Software Development,” https://agilemanifesto.org/.

44 Kent Beck, et al., “Manifesto for Agile Software Development,” https://agilemanifesto.org/principles.html.

45 Digital.AI, ”15th Annual State of Agile Report: Agile Adoption Accelerates Across Enterprise,” https://digital.ai/resource-center/analyst-
reports/state-of-agile-report.

46 Jeff Sutherland and J. J. Sutherland, Scrum: The Art of Doing Twice the Work in Half the Time (Westminster: Crown/Archetype, 2014); Ken-
neth S Rubin, Essential Scrum: A Practical Guide to the Most Popular Agile Process, The Addison-Wesley Signature Series (Addison-Wesley
Professional, 2012). Also see https://scrumguides.org/.

47 Ken Schwaber and Jeff Sutherland, “The Scrum Guide: The Definitive Guide to Scrum: The Rules of the Game,” November 2020, https://
scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf. p. 8.

Instead of seeking to establish contracts for the delivery of
software and specifying the requirements in detail, parties
should instead interact with each other throughout the soft-
ware process to guide development by generating feedback
on each of a series of incremental versions of the software,
produced in short, iterative cycles. The manifesto expresses
these changing values:43

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

In addition to these overall values, the authors of the man-
ifesto also spelled out twelve principles.44 They are clearly
designed to address the problems that traditional software
engineering practices were suffering from. However, a set of
values and principles does not make a method for producing
software, so it is not surprising that methods that were avail-
able at the time have come to represent what it means to be
“doing Agile” more than the manifesto itself does.

Scrum

By far the most popular45 of these “agile methods” today is
Scrum,46 developed by Ken Schwaber and Jeff Sutherland.
Scrum defines a number of roles, events, and artifacts that guide
software development activities. Its central artifact is the Prod-
uct Backlog, which contains a prioritized list of work items and
is managed by the Product Owner. The effort required to imple-
ment them is estimated by the developers and they are assigned
a value by the product owner, to create a prioritized list of work
items (valuable + easy = high priority). Work in Scrum happens
in short Sprints, often two weeks long. The Scrum Guide47 de-
scribes work items rather vaguely as “what is needed to improve
the product” but they are usually User Stories that each represent
a feature of the system. User stories are simple statements that
do not flesh out all the requirements for a feature but serve as
reminders that a further discussion of the work item needs to

Software development had
long been plagued by a
sense of crisis as too many
projects overran in cost or
time or both.”

“

https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/principles.html
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://scrumguides.org/
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf

CARR CENTER FOR HUMAN RIGHTS POLICY10

take place between the product owner and developers during
the Sprint Planning meeting.48 The development work happens
during the Sprint, a time-boxed period during which developers
are protected from any changes in requirements as well as from
changes in the composition of the team and its work environ-
ment. At the end, feedback on the developed increment is pro-
vided in the Sprint Review and possible improvements to working
practices are discussed in the Sprint Retrospective.

There are a number of things to note about the process. The
first is that the product owner is the source of work items,
though the Scrum Guide notes that the team can invite others
into the process to provide advice.49 There is no mention of
systematic stakeholder involvement. Nor is there any men-
tion of where the product owner gets work items and their de-
scription from. They are treated, effectively, as an oracle that
abstracts away any user research done, any work to define
product features and work items. They also play a central role
in providing feedback on the developed increment but it is
not clear by what criteria they evaluate the increment or what
methods they would use.

The Manifesto for Agile Software Development emphasizes
“customer collaboration.” In Scrum, this gets reduced to the
role of the product owner. The Scrum Guide states clearly that
the product owner must be a single person, not a committee,
and that their task is to represent the needs of many stake-
holders.50 It does not mention what form any consultation,
user research, or stakeholder engagement might take. There
is no mention either of requirements or how they should be
documented other than there should be a definition of when
a feature implementation is “Done.”

There is no suggestion of what is to be done about require-
ments that are difficult to specify precisely. Requirements that
are notorious are those that state that a system should not do
something as well as those relating to quality attributes such
as usability. The emphasis on individual features also makes
it difficult to express cross-cutting concerns such as securi-
ty, dependability, or data protection. Following the dictum
of “working software over comprehensive documentation,”
Scrum also does not say much about system architecture and

48 Mike Cohn, User Stories Applied: For Agile Software Development, 1st edition, Addison-Wesley Signature Series (Boston: Addison-Wesley, 2004). p.40.

49 Schwaber and Sutherland, “The Scrum Guide: The Definitive Guide to Scrum: The Rules of the Game.” p. 8.

50 Schwaber and Sutherland. p. 6.

51 Ian Sommerville, Engineering Software Products: An Introduction to Modern Software Engineering (Pearson, 2020).

52 Ian Sommerville, Software Engineering, 10th ed. (Pearson, 2016).

53 Bertrand Meyer, Agile!: The Good, the Hype and the Ugly (Springer International Publishing : Imprint: Springer, 2014).

design, topics that fill their own chapters in traditional soft-
ware engineering textbooks. For example, it is noticeable that
Ian Sommerville’s latest book, Engineering Software Prod-
ucts,51 is missing a lot of content from his long-running text-
book Software Engineering,52 which reached its 10th edition. It
seems that going with the times means ignoring lessons from
the past. Both books are available but which one is going to
generate more sales going forward?

That the Scrum Guide itself leaves a lot unspecified is perhaps
not surprising since it is the most general document. The
problem is that it is not alone in neglecting topics that would
be of immense value if we wanted to practice rights-respect-
ing software engineering. Scrum and its literature do not just
leave out important topics, they eschew anything that would
require some form of up-front work or continuous attention.
This potentially affects requirements engineering, system ar-
chitecture, consistent design of user interfaces, attention to
user experience, dependability, security, and maintainability.
Meyer critiques this, stating that:

There is, however, no argument for shunning the nor-
mal engineering practice—the practice, in fact, of any
rational endeavor—of studying a problem before at-
tempting to solve it, and of defining the architecture of
the solution before embarking on the details.53

CARR CENTER FOR HUMAN RIGHTS POLICY11

As a result, the process that seems to work “in the small”
during development—build something, evaluate, correct
problems—gets scaled up to the whole system. This is why
half-baked ideas are let loose on an unsuspecting public while
up-front work as well as ongoing concerns are sidelined. This
does not just affect up-front design and architectural con-
siderations but such things as the consideration of the key
concepts inherent in a piece of software and the question of
whether they meet the needs and expectations of the intend-
ed users. Daniel Jackson writes:54

…the key decisions that determine whether a software
application or system is useful and fulfills its users’ needs
lie elsewhere, in the kind of software design in which the
functionality and the patterns of interaction with the user
are shaped. These big questions were at one time more
central in computer science. […] But as time passed, they
became less fashionable, and they faded away. Research
in software engineering narrowed....

There has been debate around the tendency of people “doing
Agile” to avoid defining an explicit software architecture55 but
the lack of attention to requirements specification has only
recently been criticized. Meyer56 undertook a critical analysis
of methods of agile software engineering and concludes on
the topic of requirements:

The resulting systems are narrowly geared to the spe-
cific user stories that have been identified; they often
do not apply to other uses; and they are hard to adapt
to more general requirements. User stories are no sub-
stitute for a system requirements effort aimed at defin-
ing the key abstractions and the associated operations
(the domain model) and clearly separating machine
and domain properties.

54 Daniel Jackson, The Essence of Software: Why Concepts Matter for Great Design (Princeton: Princeton University Press, 2021). p.9

55 George Fairbanks, Just Enough Software Architecture: A Risk-Driven Approach (Boulder; Marshall & Brainerd, 2010).

56 Meyer, Agile! The Good, the Hype and the Ugly.

57 I have presented the subject of software engineering at the University of St Andrews for about a decade before recently leaving to do more
software engineering in practice and it has been increasingly hard to shift students’ focus away from the Scrum Guide and towards topics
like requirements engineering and stakeholder involvement

58 Fairbanks, Just Enough Software Architecture: A Risk-Driven Approach.

59 Caitlin Tan, Rochelle King, and Elizabeth Churchill, Designing with Data, 1st ed. (Sebastopol; O’Reilly Media, Inc, 2017).

60 Shoshana Zuboff, The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power, First edition. (New York:
PublicAffairs, 2019). p.204ff.

61 Jez Humble and Dave Farley, Continuous Delivery: A Handbook for Building, Deploying, Testing and Releasing Software, 1st edition (Addison-

It seems fair to say that with the wide adoption of Scrum,
software engineering has experienced a regression. To be fair,
there are many books on the market that further elaborate
on Scrum and give useful advice but, and this is crucial, the
literature is quite scattered, and it is difficult to ingest as well
as to teach57. There is, to my knowledge, no book on the mar-
ket that does for requirements what George Fairbanks’ book
Just Enough Architecture58 does for system architecture. Fair-
banks argues that instead of eschewing explicit work on ar-
chitecture entirely, the amount of effort invested should be
proportional to the risk involved in getting it wrong. Likewise,
many systems built today may not require a full-scale human
rights impact assessment but it seems that we have lost the
ability to distinguish those from the ones that do and to take
appropriate action.

A/B Testing

What is more, instead of conducting user research that would
seek to answer what behavior stakeholders might expect
from a system or how outcomes might affect them, compa-
nies often develop different versions of a feature and roll them
out as part of an A/B test59 where users are randomly assigned
to one version and their behavior60 is observed as one might
observe wild animals’ behavior. The version that leads to de-
sirable user behavior is then carried forward. What is desir-
able, of course, is defined by those who control the system. It
is not something people more broadly have input on and have
agreed to. A/B testing is enabled by methods of agile software
development that allow for large numbers of increments to
be developed in relatively little time. The practices are, in
fact, mutually supportive as A/B testing can serve to provide
the rapid feedback in fortnightly cycles that “Agile” demands.
This integration is enabled by recent advances in software
engineering to support continuous testing and deployment.61
Setting up the whole package of agile software development,

CARR CENTER FOR HUMAN RIGHTS POLICY12

continuous integration, and A/B testing
is a significant technical and organiza-
tional challenge, which is perhaps why
we see these practices mainly at the larg-
est IT companies. However, there are ef-
forts to commodify them and make them
more widely available. The smart money
bets that we will see much more of this
practice in the near future. The practice
of online experimentation is certainly
not uncontroversial, as the debate about
Facebook’s Emotional Contagion Experiment 62has shown,
which raised serious questions about the ethics of online exper-
imentation. Unlike this case, which came to public attention be-
cause researchers involved published their findings, much online
experimentation done in the IT industry goes unremarked.

We might stop at this point and ask if the large-scale, routine
experimentation on unsuspecting users is not the antithesis
of meaningful stakeholder engagement and of any decent
attempt to elicit and negotiate user requirements. Online
experimentation relies on measures defined in advance
by the experimenter to measure user behavior observable
through the software artifact. Without dwelling on the top-
ic, it seems clear that while this method may work well to
establish whether people react to advertising or how long
it takes them to perform a given task, it is not suitable to
answer more complex questions about the social world and
the impact a system has on its users and their rights. It is
thus an example of a social science method that is not useful
for rights-respecting software engineering. It is not a way to
elicit and negotiate requirements but merely a way to vali-
date designs against very narrow success criteria defined by
the developers of technologies.

Critiques of Scrum & the Agile Industry

It is not that there has not been a critique of what “Agile” has
become, but as we will see the critique is somewhat different
from what I have offered above. The world now has two de-
cades of experience with agile software development. Since

Wesley Professional, 2010).

62 e.g., Evan Selinger and Woodrow Hartzog, “Facebook’s Emotional Contagion Study and the Ethical Problem of Co-Opted Identity in
Mediated Environments Where Users Lack Control,” Research Ethics 12, no. 1 (2016): 35–43, https://doi.org/10.1177/1747016115579531;
David Shaw, “Facebook’s Flawed Emotion Experiment: Antisocial Research on Social Network Users,” Research Ethics 12, no. 1 (2016): 29–34,
https://doi.org/10.1177/1747016115579535.

63 Dave Thomas, “Agile is Dead,” https://www.youtube.com/watch?v=a-BOSpxYJ9M.

64 Martin Fowler, “The State of Agile Software in 2018,” August 2018, https://martinfowler.com/articles/agile-aus-2018.html.

65 Dave Thomas, “Agile is Dead,” https://youtu.be/a-BOSpxYJ9M?t=548 (at 9:08).

66 Dave Thomas, “Agile is Dead,” https://youtu.be/a-BOSpxYJ9M?t=548 (at 9:08).

about 2015, when Dave Thomas, one of
the authors of the manifesto, gave a talk
entitled “Agile is Dead,”63 there has been
an increase in voices that criticize either
the state of the industry that has de-
veloped off the back of the agile move-
ment or that criticize common trends
and practices associated with “Agile.”

Thomas’ critique is that “Agile” has
been turned from an adjective into a

noun, even one that gets capitalized and so is turned it into
a thing that can be commercialized. What started out as an
expression of values and principles offered to the world by a
group of likeminded individuals has turned into a sizable in-
dustry that has commodified “Agile” into products like books,
training courses, conferences, certificates, consultancy offer-
ings, software products and services, market reports, and so
forth. Martin Fowler calls it the “agile industrial complex.”64
Thomas suggests that, as a consequence, “the values have
been totally lost behind the implementation.”65 The com-
modification has gone hand-in-hand with the establishment
of “Agile” as a dogma that is difficult to ignore—for individuals
and companies alike.

I would agree with Thomas that the spirit of the manifesto for
agile software engineering has been lost in the implementation
(Scrum). However, in contrast to him, I do not think that the val-
ues of the manifesto are just fine. After this quick look at Scrum
and the critique of “Agile,” it is time to revisit the four values.

Revisiting the Values

Thomas summarizes the sentiment of the authors of the man-
ifesto at the time like this: “How can we cut down on all of the
bullshit, basically, and just focus on writing software.”66 The
word “bullshit” is a gloss that is worth unpacking. It is true that
the degree of up-front planning and detailed documentation
in traditional software engineering all too often was not help-
ful. However, the sentiment expressed here is rather close to
the “move fast and break things” motto that Mark Zuckerberg

...the values
[of Agile] have
been totally
lost behind the
implementation.”

“

—Martin Fowler

https://www.youtube.com/watch?v=a-BOSpxYJ9M
https://martinfowler.com/articles/agile-aus-2018.html
https://youtu.be/a-BOSpxYJ9M?t=548
https://youtu.be/a-BOSpxYJ9M?t=548

CARR CENTER FOR HUMAN RIGHTS POLICY13

popularized. I have argued above that the fathers67 of agile
software development have, perhaps inadvertently, cut down
on some things that might have been worth preserving.

With a focus on the negative consequences of our widespread
application of IT described in the introduction and with (human)
rights issues in mind, we can take a critical look at how the way
the values espoused in the manifesto have sown the seeds for
what Scrum would become. This helps to understand how the
IT industry has lost sight of important achievements in software
engineering and other fields. A consequent reconsideration of
values and methods might provide some of the wherewithal for
dealing with the current crisis and for bending software develop-
ment practices towards less dystopian futures.

Before starting, however, we need to look at the format that
was used to express the values: “X over Y,” with X being some-
thing they wished to endorse while Y was something valued
in the past that they wanted to de-emphasize. They wrote,
directly underneath the list of values: “while there is value in
the items on the right, we value the items on the left more.”68
The authors were careful to note that they did not wish to
throw out traditional practices of software engineering but
such subtleties, it would seem, were lost in the implementa-
tion of what became “Agile,” the thing that could be sold and
that became the new dogma of software engineering. Here is
the list of values again:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

67 There were no mothers around. The group that met
was pretty homogeneous in many other respects. This
makes one wonder if things could have been different?!

68 Kent Beck, et al., “Manifesto for Agile Software De-
velopment,” https://agilemanifesto.org/

The emphasis on individuals and interactions was a reaction
to the experience that the process models and software engi-
neering tools of the day were sometimes holding up develop-
ment. This was, to a large extent, due to the fact that process
models of the day had been developed at a time when much
software development was still bespoke development. There
was also a lack of a clear leader in the field, with a multi-
tude of options competing and struggling to replace the idea
that software should be developed according to a strict se-
quence of analysis, implementation, and testing—the infa-
mous “waterfall model.”

Compared to the waterfall model, the shift towards reliance
on small, closely knit teams bringing together the necessary
skills required and working incrementally was certainly a sen-
sible move. The problem is that, in the process, values and
concerns that were embedded in the processes and tools
were also thrown out.

The emphasis on working software over documentation is un-
derstandable but—and this is a big but—it is difficult to rea-
son about a software system and the impact it will have on
stakeholder groups by looking at code, no matter how well
it is written. Documentation is not just a means for recording
facts about a system but also a way to record decisions made
and to establish accountability.

On the process side of things, process models that may have
included notions of stakeholder involvement in development
were replaced with the rather vague idea of “customer collabo-
ration” and the “product owner,” a central figure tasked to rep-
resent all stakeholders and their needs in the software process.

Doing so adequately seems a herculean task at best.
In light of questions of inequities and (human) rights
it seems an impossible task for a single individual, es-
pecially if this individual is recruited from the same
demographic as most of the IT industry.

The “working” part in “working software” also does
an interesting job. It resonates with the decision to
favor incremental delivery. If each short period of
weeks rather than months is to produce a new in-
crement, then longer-term work is easily sidelined.
While the focus on obtaining feedback in Scrum is
laudable, the short-term focus can lead to feedback
being given on individual pieces, without evalua-
tion of the larger whole or consideration of how fea-
tures or design decisions may impact stakeholders.
To do this longer-term work would mean stepping
out of the model provided by Scrum.

https://agilemanifesto.org/

CARR CENTER FOR HUMAN RIGHTS POLICY14

The word “customer” represents a focus away from thinking
of stakeholders, direct and indirect “users” of a system, and
towards people who sponsor the development. This is no dif-
ferent than the alternative value listed, “contract negotiation.”
The manifesto may not have made things worse here, but an
opportunity was certainly missed to re-orient software de-
velopment to stakeholder needs. As a result, we now have
A/B testing emerging as a major driver of decision making
that determines what features a system should have. We can
see many systems optimized for the needs of advertisers and
their interest in “engagement” rather than for what people
may want from the system.

The examination of the values expressed in
the manifesto shows that what I have called
the regression in software engineering can
be traced back to the values in the mani-
festo and is not just a consequence of the
implementation through Scrum. The idea
of rights-respecting software engineering
is a call to critically reflect not just on the
inadequacies of the dominant approach
in software engineering today but to con-
sider the values and principles of the agile
manifesto itself and to revive some of what
has been lost and sidelined in software en-
gineering and in computing more generally.

We can see many
systems optimized for
the needs of advertisers
and their interest in
ʻengagementʼ rather than
for what people may
want from the system.”

“

CARR CENTER FOR HUMAN RIGHTS POLICY15

Conclusions

The title of this paper asks whether we can move fast without
breaking things. As in road traffic, the answer will likely de-
pend on what we mean by “fast.” None of us drive the fastest
cars in the world to work and for good reasons. Such cars are
rightly limited to racetracks and salt lakes where the risks are
well managed. In most countries, there are restrictions on
how fast one can go—for a variety of reasons.69

We may want to think about where it makes sense to move
fast in software engineering and where some deliberation is
required that will take time. For example, there is absolutely
no reason not to work in small increments when implementing
specific functionality. Being able to have a potentially releas-
able product after each sprint is also a good thing. At the same
time, sprinting off in the wrong direction is costly and some up-
front planning and due diligence will be required, unless our
task is simply to burn through endless piles of venture capital.

So, are there alternatives to the “agile industrial complex,”
as Fowler calls it? The answer, fortunately, is that there are
at least the beginnings of alternatives. The problem is that
they are not widely enough promoted, see comparatively
little uptake so far and have yet to be integrated into teach-
ing and training. Both Ambler's Disciplined Agile Delivery70
and the Essence Standard71 emphasize the need to tailor
software engineering approaches to the context in which
software development takes place as well as to consid-
er a broader view of the software lifecycle and its context.

That a significant number of established names72 in software
engineering speak out against the “agile-industrial complex”
is encouraging. There is a unique opportunity to establish
rights-respecting software engineering on the basis of this
development. Many of the elements of what is required to
establish rights-respecting software engineering practices
can already be found in the body of knowledge of software

69 Even Germany is warming to the idea of a national speed limit. Practically, there are already limits on most stretches of the Autobahn.

70 Scott Ambler, Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software Delivery in the Enterprise, 1st edition (IBM Press, Pearson
PLC, Upper Saddle River, NJ, 2012); Scott Ambler and Mark Lines, Choose Your WoW: A Disciplined Agile Approach to Optimizing Your Way of
Working, 2nd ed. (Project Management Institute, Newton Square, PA, 2022).

71 Ivar Jacobson et al., The Essentials of Modern Software Engineering: Free the Practices from the Method Prisons! (Association for Computing
Machinery and Morgan & Claypool, San Rafael, CA, 2019). For the standard itself see https://semat.org/en/essence-1.html.

72 At least Dave Thomas, Martin Fowler, Ivar Jacobson, Bertrand Meyer and Scott Ambler have done so.

73 Mullaney, Your Computer Is on Fire. p. 7.

engineering as well as in related fields such as human-com-
puter interaction, social informatics, science and technolo-
gy studies, and participatory design (to name a few). Table
2 recaps some of the critiques offered in this paper of the
“agile industrial complex” and lists changes that would be
required to establish more rights-respecting software engi-
neering.

Of the areas listed, I would highlight the importance of devel-
oping a common language for representing rights through-
out the process. Without such a language, bringing together
people from the wide range of disciplines required will be
impossible. A common language also serves to tie together
the practices in the area listed. Making rights a central con-
cept within software engineering would help us address the
problems we face today in our technicized world. We need
to re-discover and activate existing knowledge from a range
of disciplines to lose the narrow focus on the work of im-
plementing functionality and the mantra of speed that the
“agile industrial complex” has created. The moment seems
to be right to do this. In the words, again, of Mullaney: “the
time for equivocation is over.”73

https://semat.org/en/essence-1.html

CARR CENTER FOR HUMAN RIGHTS POLICY16

Table 2
Problems with Current Software Engineering Methods Summarized
and Implications for Rights-Respecting Software Engineering

DIMENSION

Cadence and focus

Process model

Source of
requirements

Requirements
specification

Documentation

Prioritization

Testing

Knowledge

Stakeholder
engagement

Integration into wider
business specification

SCRUM / AGILE

Individual features,
often 14 days of work,
planned just in time

Developer-centric

From product owner

User-stories

Eschewed

By vague concept
of “value”

Automation preferred

Cross functional teams

"Customer collaboration"

Only via product manager

PROBLEM

Does not fit with
overarching concerns;
difficult to bring things into
focus that are not features

Ignores work that happens
outside development team

Lack of method for wider
stakeholder engagement

Focus on functionality;
individualized; difficult to
capture things that are
not features

No accountability
for design decisions

 How to assign a “value”
to respecting rights?

Feature testing can be auto-
mated; more difficult with
other concerns.

Great, but not specific about
what knowledges is required

Unspecific as to what this
looks like; unclear who “the
customer” is; narrow focus
on that persona

Reliance on product owner
to navigate wider business
processes

RIGHTS-RESPECTING

Some up-front analysis; review at
longer intervals at specific points
in time, such as around major
milestones and before release

Identify process elements outside
narrow development focus,
such as human rights impact
assessment and integrate into
wider process model

Utilize wider range of
elicitation methods including
participatory design

Format for specifying rights
as input to design and
reviews needed

Document where accountability
is needed and in ways that are
appropriate to the issue of concern

Projects require effective
oversight and steering to
avoid human rights being forever
“under the line” in the backlog

Manual testing and review
with appropriate tool support

Human rights experts unlikely
to be part of the core development
team; need process model to
integrate (see above)

Wider engagement strategy that goes
beyond treating stakeholders as sources
of information or parties to be informed
/ consulted but empowers them to
make decisions to protect their rights

Integrate with business-level
concepts, such as corporate
social responsibility and
responsible innovation

Statements and views expressed in this report are solely

those of the author and do not imply endorsement by Harvard

University, the Harvard Kennedy School, or the Carr Center for

Human Rights Policy.

Copyright 2022, President and Fellows of Harvard College

Printed in the United States of America

Carr Center for Human Rights Policy
Harvard Kennedy School
79 JFK Street
Cambridge, MA 02138

CARR CENTER FOR HUMAN RIGHTS POLICY17

CARR CENTER FOR HUMAN RIGHTS POLICY18

This publication was published by the Carr Center
for Human Rights Policy at the John F. Kennedy
School of Government at Harvard University

Copyright 2022, President and Fellows of Harvard College
Printed in the United States of America

carrcenter.hks.harvard.edu
79 JFK Street | Cambridge, MA 02138

617.495.5819

